ELECTROPHILIC HALOGENATION OF nido-5,6-C₂B₈H₁₂

Josef HOLUB¹, Mario BAKARDJIEV² and Bohumil ŠTÍBR^{3,*}

Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, 250 68 Řež, Czech Republic; e-mail: ¹ holub@iic.cas.cz, ² mario@iic.cas.cz, ³ stibr@iic.cas.cz

> Received April 19, 2006 Accepted September 18, 2006

Room-temperature chlorination of the dicarbaborane *nido*-5,6-C₂B₈H₁₂ (1) with CCl₄ in the presence of anhydrous AlCl₃ yielded a mixture of 7-Cl-5,6-C₂B₈H₁₁ (7-Cl-1) (yield 34%), 4-Cl-5,6-C₂B₈H₁₁ (4-Cl-1) (yield 20%), 3-Cl-5,6-C₂B₈H₁₁ (3-Cl-1) (yield 21%), and 3,4-Cl₂-5,6-C₂B₈H₁₀ (3,4-Cl₂-1) (yield 26%), while a trisubstituted derivative, 3,4,7-Cl₃-5,6-C₂B₈H₉ (3,4,7-Cl₃-1) (yield 80%), was isolated as a sole product at reflux. Bromination of compound 1 with elemental Br₂ in the presence of Al powder at ambient temperature in CS₂ gave a mixture of 7-Br-5,6-C₂B₈H₁₁ (7-Br-1) (yield 31%) and 4,7-Br₂-5,6-C₂B₈H₁₀ (4,7-Br₂-1) (yield 52%). The most selective was AlCl₃-catalyzed iodination of 1 in refluxing benzene, which resulted in the formation of 7-I-5,6-C₂B₈H₁₁ (7-I-1) (yield 85%). Although performed under different conditions, the experiments point to the following order of reactivity of individual positions in 1 in electrophilic halogenation: 7 > 4 > 3. Individual compounds were isolated and purified by liquid chromatography and characterized by mass spectrometry and NMR spectroscopy (¹¹B, ¹H) combined with two-dimensional [¹¹B-¹¹B]-COSY and ¹H-{¹¹B}(selective)} NMR techniques. Various NMR effects of halo-substitution are discussed for the series of monosubstituted 7-X-5,6-C₂B₈H₁₁ (7-X-1) compounds (X = Cl, Br, and I).

Keywords: Boranes; Carboranes; Dicarbaboranes; Electrophilic substitutions; Halogenations; NMR spectroscopy.

The ten-vertex dicarbaborane *nido*-5,6-C₂B₈H₁₂ (1), known since 1971¹, has so far been employed as an extremely useful starting material for a variety of boron-cluster compounds containing two carbon vertices, such as $[nido-C_2B_8H_{10}]^{2-}$, *closo*-1,2-C₂B₈H₁₀, *arachno*-6,9-C₂B₈H₁₄, and ligand derivatives of the *arachno*-LC₂B₈H₁₂ type (where L = amines)²⁻⁴. Insertion of carbon atoms into the structure of **1** generated a series of 11-vertex *nido*-tricarbaboranes (derivatives of $C_3B_8H_{11}^{-1}$)⁵ and twelve-vertex *arachno* tetracarbaboranes of the $C_4B_8H_{14}$ structure⁶. Incorporation of other main-group elements⁷⁻⁹ into **1** led to the isolation of the phoshadicarbaborane *nido*-PC₂B₈H₁₁, thiadicarbaborane *nido*-SC₂B₈H₁₀, and to the twelve-vertex *arachno* azatricarbaborane NC₃B₈H₁₁Me. Metal incorporation reactions between **1** and organometallic complexes generated a series of the eleven-vertex *closo*-

metalladicarbaboranes of the $MC_2B_8H_{10}$ type¹⁰. Preliminary results on electrophilic bromination, iodination and deuteration of **1** were published 25 years ago¹¹. These halogenation reactions were performed under conditions similar to those employed earlier for other neutral carboranes¹² and boranes¹³. In this paper, we report full experimental details and a more complete set of halo derivatives of carborane **1**. These were isolated from specific substitution reactions of carborane **1** that lead to halo-substitution at three different boron positions of the cage.

RESULTS AND DISCUSSION

Halogenations of dicarbaborane $nido-5, 6-C_2B_8H_{12}$ (1) under electrophilic conditions^{12,13a}, similar to those employed for the halogenation of arachno-6,9-C₂B₈H₁₄ or nido-B₁₀H₁₄, afforded mono-, di-, and trisubstituted derivatives, depending on the nature of the halogenation agent and temperature. Thus, a room-temperature reaction of compound $\mathbf{1}$ with CCl_4 in the presence of anhydrous AlCl₃ gave a mixture of 7-Cl-5,6-C₂B₈H₁₁ (7-Cl-1) (yield 34%), 4-Cl-5,6-C₂B₈H₁₁ (4-Cl-1) (yield 20%), 3-Cl-5,6-C₂B₈H₁₁ (3-Cl-1) (yield 21%), and 3,4-Cl₂-5,6-C₂B₈H₁₀ (3,4-Cl₂-1) (yield 26%). When the same reaction was performed at reflux, a trisubstituted derivative, 3,4,7-Cl₂-5,6-C₂B₈H₉ (3,4,7-Cl₃-1) (yield 80%), was isolated as a sole product. Bromination of compound 1 with elemental Br₂ in the presence of Al powder in CS₂ at room temperature gave 7-Br-5,6-C₂B₈H₁₁ (7-Br-1) (yield 31%) and 4,7-Br₂-5,6-C₂B₈H₁₀ (4,7-Br₂-1) (yield 52%), while AlCl₃-catalyzed iodination with I_2 in refluxing benzene gave only 7-I-5,6-C₂B₈H₁₁ (7-I-1) (yield 85%). Individual compounds could be isolated and purified by repeated liquid chromatography in CH₂Cl₂-hexane mixtures.

1550

Electrophilic Halogenation

TABLE I NMR Data

Compound	Nucleus	Chemical shifts
$5,6-C_2B_8H_{12}{}^a$ (1)	¹¹ B ^{b,c}	6.5 (d, 154, B7), 5.1 (d, 161, B1), 3.3 (d, 154, B8), -2.8 (d, 142, B3), -3.7 (d, 150, B9), -10.0 (d, 158/34, B10), -27.1 (d, 177, B2), -39.1 (d, 154, B4), all [¹¹ B- ¹¹ B]-COSY cross-peaks observed
	${}^{1}\mathrm{H}\{{}^{11}\mathrm{B}\}{}^{b,d}$	6.48 (s, H6), 4.99 (s, H5), 3.54 (s, H1), 3.53 (s, H7), 3.14 (s, H9), 3.13 (s, H8), 2.95 (s, H3), 2.63 (s, H10), 1.05 (s, H2), 0.78 (s, H4), -2.21 (s, μH9,10), -2.47 (s, μH8,9)
7-Cl-5,6-C ₂ B ₈ H ₁₁ (7-Cl-1)	¹¹ B ^{<i>b,c</i>}	$ \begin{array}{l} 16.3 \; (s,-,B7) \; [9.8]^e, \; 8.5 \; (d,\;ca.\;160,\;B1), \; 6.7 \; (d,\;ca.\;160,\;B8), \; -0.6 \; (d,\;ca.\;160,\;B3), \; -1.1 \; (d,\;ca.\;160,\;B9), \; -8.5 \; (d,\;155,\;B10), \; -25.3 \; (d,\;180,\;B2), \; -39.0 \; (d,\;156,\;B4), \; all \; [^{11}B^{-11}B]\text{-}COSY \; cross-peaks \; observed \\ \end{array} $
	${}^{1}\mathrm{H}\{{}^{11}\mathrm{B}\}{}^{b,d}$	$ \begin{array}{l} 6.20 \; (s, H6), \; 4.74 \; (s, H5), \; 3.57 \; (s, H1), \; 3.34 \; (s, H9), \; 3.29 \; (s, H8), \; 3.18 \; (s, H3), \\ 2.66 \; (s, H10), \; 1.49 \; (s, H2), \; 0.80 \; (s, H4), \; -1.81 \; (s, \mu H9, 10), \; -2.02 \; (s, \mu H8, 9) \end{array} $
3-Cl-5,6-C ₂ B ₈ H ₁₁ (3-Cl-1)	¹¹ B ^{<i>b,c</i>}	10.95 (s, -, B3) [13.8]e, 7.8 (d, ca. 152, B1,7), 4.0 (d, 158, B8), -5.1 (d, 156, B9,10), -26.4 (d, 184, B2), -36.6 (d, 159, B4), all $[^{11}B^{-11}B]$ -COSY cross-peaks observed
	${}^{1}\mathrm{H}\{{}^{11}\mathrm{B}\}{}^{b,d}$	6.20 (s, H6), 4.86 (s, H5), 4.02 (s, H7), 3.83 (s, H1), 3.41 (s, H8), 3.17 (s, H9), 2.80 (s, H10), 1.18 (s, H2), 0.96 (s, H4), -1.97 (s, $\mu H9, 10/8, 9)$
4-Cl-5,6-C ₂ B ₈ H ₁₁ (4-Cl-1)	¹¹ B ^{<i>b,c</i>}	7.3 (d, 153, B7), 6.5 (d, 159, B1), 4.1 (d, 159, B8), -0.8 (d, 149, B3), -3.2 (d, 147, B9), -10.0 (d, 159, B10), -21.9 (s, $-$, B4) $[17.2]^e,$ -27.0 (d, 184, B2), all $[^{11}B^{-11}B]\text{-}COSY$ cross-peaks observed
	${}^{1}\mathrm{H}\{{}^{11}\mathrm{B}\}{}^{b,d}$	6.39 (s, H6), 5.14 (s, H5), 3.61 (s, H7), 3.83 (s, H1), 3.56 (s, H8), 3.51 (s, H9), 3.01 (s, H10), 1.17 (s, H2), -1.59 (s, μH9,10), -1.81 (s, μH8,9)
$\begin{array}{l} 3,4\text{-}Cl_2\text{-}5,6\text{-}C_2B_8H_{10} \\ (3,4\text{-}Cl_2\text{-}1) \end{array}$	¹¹ B ^{<i>b,c</i>}	11.1 (s, -, B3) [13.9] ^e , 8.8 (d, ca. 165, B7), 8.3 (d, ca. 153, B1), 4.6 (d, 159, B8), -4.0 (d, ca. 160, B9), -5.6 (d, ca. 160, B10), -20.8 (s, -, B4) [18.3] ^e , -26.0 (d, 180, B2), -all [^{11}B - ^{11}B]-COSY cross-peaks observed, except B7–B8 and B8–B9
	${}^{1}\mathrm{H}\{{}^{11}\mathrm{B}\}{}^{b,d}$	6.15 (s, H6), 4.94 (s, H5), 4.12 (s, H7), 3.91 (s, H1), 3.63 (s, H8), 3.56 (s, H9), 3.14 (s, H10), 1.30 (s, H2), -1.30 (s, $\mu H9, 10/8, 9)$
$\begin{array}{l} 3,4,7\text{-}\mathrm{Cl}_3\text{-}5,6\text{-}\mathrm{C}_2B_8\mathrm{H}_9\\ (3,4,7\text{-}\mathrm{Cl}_3\text{-}1) \end{array}$	$^{11}\mathrm{B}^{b,c}$	$ \begin{array}{l} 14.7 \ (s, -, B7) [8.2]^{e}, \ 10.3 \ (s, -, B3) \ [13.1]^{e}, \ 9.2 \ (s, \ ca.160, \ B1), \ 4.5 \ (d, \ 159, \ B8), \\ -2.2 \ (d, \ 164, \ B9), \ -6.0 \ (d, \ 159, \ B10), \ -21.6 \ (s, -, \ B4) \ [17.5]e, \ -25.3 \ (d, \ 183, \ B2), \\ all \ \left[{}^{11}B {}^{-11}B {}^{-COSY} \ cross-peaks \ observed \end{array} \right. $
	${}^{1}\mathrm{H}\{{}^{11}\mathrm{B}\}{}^{b,d}$	6.14 (s, H6), 5.00 (s, H5), 3.90 (s, H1), 3.65 (s, H9), 3.39 (s, H8), 2.96 (s, H10), 1.44 (s, H2), -0.65 (s, $\mu\rm{H9,10}$), -0.80 (s, $\mu\rm{H8,9})$
7-Br-5,6-C ₂ B ₈ H ₁₁ (7-Br- 1)	¹¹ B ^{<i>b,c</i>}	9.6 (s, -, B7) [3.1] ^e , 7.4 (d, ca. 160, B1), 5.9 (s, ca. 160, B8), -0.9 (d, ca. 160, B3), -2.4 (d, ca. 160, B9), -9.4 (d, 156/33, B10), -26.3 (d, 183, B2), -39.4 (d, 158, B4), all [$^{11}B^{-11}B^{-1}COSY$ cross-peaks observed
	${}^{1}H{{}^{11}B}^{b,d}$	6.39 (s, H6), 4.90 (s, H5), 3.50 (s, H1), 3.34 (s, H8,9), 3.29 (s, H3), 2.64 (s, H10), 1.49 (s, H2), 0.86 (s, H4), -1.84 (s, μH9,10), -1.99 (s, μH8,9)
4,7-Br ₂ -5,6-C ₂ B ₈ H ₁₀ (4,7-Br ₂ -1)	$^{11}\text{B}^{b,c}$	9.9 (s, -, B7) [3.4] ^e , 8.5 (d, 174, B1), 6.4 (s, 177, B8), 0.9 (d, 155, B3), -1.8 (d, 168, B9), -8.9 (d, 156, B10), -25.6 (d, 180, B2), -29.8 (s, -, B4) $[9.3]^e$, all $[^{11}B^{-11}B]^{-}COSY$ cross-peaks observed
	${}^{1}\mathrm{H}\{{}^{11}\mathrm{B}\}{}^{b,d}$	6.39 (s, H6), 5.09 (s, H5), 3.84 (s, H1,8), 3.60 (s, H3), 3.04 (s, H9), 3.01 (s, H10), 1.64 (s, H2), -1.11 (s, µH9,10), -1.25 (s, µH8,9)
7-I-5,6- $C_2B_8H_{11}$ (7-I-1)	¹¹ B ^{<i>b,c</i>}	6.9 (d, 162, B1,8), 0.0 (d, 150, B3), -2.8 (d,164, B9), -4.4 (s, -, B7) $[-9.9]^{\circ},$ -9.5 (d, 156, B10), -26.0 (d, 183, B2), -36.4 (d, 159, B4), all $[^{11}B^{-11}B]$ -COSY cross-peaks observed
	${}^{1}H{}^{11}B{}^{a,c}$	6.63 (s, H6), 5.10 (s, H5), 3.52 (s, H8), 3.43 (s, H3), 3.37 (s, H1), 3.30 (s, H9), 2.61 (s, H10), 1.51 (s, H2), 0.94 (s, H4), -1.90 (s, μH9,10/8,9)

^{*a*} Measured under the same conditions for comparison. ^{*b*} In CDCl₃. ^{*c*} δ (¹¹B) (multiplicity, ¹J_{BH} in Hz, assignment). ^{*d*} δ (¹H) (multiplicity, assignment). ^{*e*} $\Delta \alpha$ value at the substituted site (in square brackets).

Mass spectra of all compounds exhibit theoretical cut-offs in their molecular envelops. The compounds isolated were also characterized by ¹¹B and ¹H NMR spectroscopy (see Table I). The use two-dimensional [¹¹B-¹¹B]-COSY¹⁴ and ¹H-{¹¹B(selective)}¹⁵ NMR techniques led to complete assignments of all ¹¹B and ¹H resonances to individual BH cluster units. The ¹¹B NMR spectra of all the isolated compounds consist of eight different resonances, of which those of the substituted boron vertices are singlets, while others are doublets due to ¹J(BH) coupling. Table I (values in square brackets) also shows ¹¹B chemical shift changes induced by individual halogens at the substituted sites ($\Delta \alpha$) ($\Delta \alpha = \delta_s - \delta_p$, where subscripts s and p refer to the substituted and parent compounds¹⁶, respectively). It can be readily seen that the shielding decreases in the expected¹⁶ order I > Br > Cl. Inspection of Table I also suggests that shielding by halogens in individual substituted vertices decreases remarkably in the order 7 > 3 > 4. Figure 1 shows that the plot of chemical shift changes $\Delta \alpha$ for the monosubstituted derivatives 7-X-1 (X = Cl, Br, and I) at the substituted B7 site versus the corresponding characteristics for the structurally similar 5-X-B₁₀H₁₃ compounds $(5-X-2)^{13}$ is essentially linear, which reflects a similar shielding behaviour in the ten-vertex nido series of boron-cluster compounds (for similar correlations. see ref.¹⁷).

A characteristic feature of the ¹H NMR spectra of all the derivatives of **1** isolated is the presence of two broad low-field singlets, attributed to H6 and

Fig. 1

Plot of $\Delta\alpha(^{11}\text{B7}) = \delta(^{11}\text{B7})_s - \delta(^{11}\text{B7})_p \text{ vs } \Delta\alpha(^{11}\text{B5}) = \delta(^{11}\text{B5})_s - \delta(^{11}\text{B5})_p \text{ chemical shift changes for compounds 7-X-5,6-C_2B_8H_{11}} (7-X-1) and 5-X-B_{10}H_{13} (5-X-2), data from ref.¹³) (X = Cl, Br, and I; subscripts s and p relate to the substituted and parent compounds, respectively)$

H5 protons, and of two broad high-field resonances of two nonequivalent μ -H8,9 and μ -H9,10 hydrogen bridges¹⁸. In addition to these resonances, the ¹H-{¹¹B} NMR spectra show singlet signals due to unsubstituted BH units. Another interesting NMR correlation is shown in Fig. 2, which demonstrates linear relationship between $\Delta\alpha$ (¹¹B7) and $\Delta\beta$ (¹H6) parameters for the monosubstituted derivatives 7-X-1 (where X = Cl, Br, and I), which means that the ¹H shift of the hydrogen on the C6 vertex is proportionally affected by the type of the halogen on the neighbouring B7 atom (β -effect)¹⁶.

FIG. 2

Linear correlation between $\Delta\alpha(^{11}\text{B7}) = \delta(^{11}\text{B7})_s - \delta(^{11}\text{B7})_p$ and $\Delta\beta(^{1}\text{H6}) = \delta(^{1}\text{H6})_s - \delta(^{1}\text{H6})_p$ chemical shift changes for the monosubstituted derivatives 7-X-1 (X = Cl, Br, and I; subscripts s and p relate to the substituted and parent compounds, respectively)

CONCLUSION

We have shown that halogenations of the dicarbaborane *nido*-5,6- $C_2B_8H_{12}$ (1) under electrophilic conditions resulted in the formation of mono-, di-, and trisubstituted derivatives. A typical feature of all the halogenations discussed above is the formation of 7-substituted compounds (7-X-1, where X = Cl, Br, and I), further halogenations occur in positions 4 or 3, depending on the halogenation agent. Although performed under different conditions, the experiments established the following order of reactivities of positions in 1 in electrophilic halogenation: 7 > 4 > 3, which is in agreement with the previously reported results of electrophilic deuteration¹¹. It was also established that shielding by halogens in individual substituted vertices decreases sharply in the order 7 > 3 > 4. We hope that the halo de-

rivatives of **1** will serve as halogen-labelled compounds in mechanistic studies of cluster rearrangements, complex formation, and also in other areas of carborane chemistry.

EXPERIMENTAL

General

All reactions were carried out using standard vacuum or inert-atmosphere techniques as described by Shriver¹⁹, although some operations, such as column LC, were carried out in air. The starting carborane 1 was prepared according to the literature²⁰. Fluka dichloromethane and hexane were dried over CaH₂ and freshly distilled before use. Other chemicals were of reagent or analytical grade and were used as purchased. Column chromatography was carried out using silica gel (Aldrich, 130-270 mesh) as stationary phase. The purity of chromatographic fractions was checked by analytical TLC on Silufol (silica gel on aluminum foil; detection by I₂ vapour, followed by 2% aqueous AgNO₃ spray). Low-resolution mass spectra were obtained using a Finnigan MAT Magnum ion-trap quadrupole mass spectrometer equipped with a heated inlet option, as developed by Spectronex AG, Basel, Switzerland (70 eV, EI ionisation). ¹H and ¹¹B NMR spectroscopy was performed at 9.4 T on a Varian Mercury 400 instrument. The [¹¹B-¹¹B]-COSY ¹⁴ and ¹H-{¹¹B(selective)}¹⁵ NMR experiments were made essentially as described earlier¹⁸. Chemical shifts are given in ppm referenced to high-frequency (low field) of Ξ = 32.083971 MHz (nominally F₃B·OEt₂ in CDCl₃) for ¹¹B (±0.5 ppm) and $\Xi = 100$ MHz (SiMe₄) for ¹H (quoted ±0.05 ppm), Ξ being defined as in ref.²¹ Solvent resonances were used as internal secondary standards. NMR data for all the compounds isolated are listed in Table I.

7-Cl-*nido*-5,6-C₂B₈H₁₁ (7-Cl-1), 3-Cl-*nido*-5,6-C₂B₈H₁₁ (3-Cl-1), and 3,4-Cl₂-*nido*-5,6-C₂B₈H₁₀ (3,4-Cl₂-1)

A solution of compound **1** (123 mg, 1 mmol) in CCl₄ (20 ml) was treated with anhydrous AlCl₃ (66 mg, 0.5 mmol) and the mixture was stirred at room temperature for 4 h. The mixture was then carefully treated with water (20 ml) at 0 °C and the CCl₄ layer evaporated to dryness. The residual solid was then separated by LC on a silica gel column (2.5 × 35 cm) using hexane-CH₂Cl₂ (3:1) mixture as a mobile phase. Three main fractions of R_F 0.50, 0.25, 0.20, and 0.15 were evaporated to dryness and identified by ¹¹B NMR as 7-Cl-1 (53 mg, 34%), 4-Cl-1 (32 mg, 20%), 3-Cl-1 (33 mg, 21%), and 3,4-Cl₂-1 (50 mg, 26%), respectively. Analytical samples were obtained by slow evaporation of hexane solutions as white crystals.

7-Cl-1: m.p. 144 °C. MS, m/z: 159 (5%, M⁺), 154 (100%). For C₂H₁₁B₈Cl (157.0) calculated: 15.30% C, 7.06% H; found: 15.20% C, 6.91% H.

4-Cl-1: m.p. 134 °C. MS, *m/z*: 159 (5%, M⁺). For $C_2H_{11}B_8Cl$ (157.0) calculated: 15.30% C, 7.06% H; found: 15.10% C, 7.11% H.

3-Cl-1: m.p. 130 °C. MS, m/z: 159 (5%, M⁺), 154 (100%). For C₂H₁₁B₈Cl (157.0) calculated: 15.30% C, 7.06% H; found: 15.16% C, 7.13% H.

3,4-Cl₂-1: m.p. 162 °C. MS, m/z: 194 (5%, M⁺), 188 (100%). For C₂H₁₀B₈Cl₂ (192.5) calculated: 12.48% C, 5.24% H; found: 11.86% C, 5.32% H.

3,4,7-Cl₃-nido-5,6-C₂B₈H₉ (3,4,7-Cl₃-1)

A solution of compound **1** (123 mg, 1 mmol) in CCl₄ (20 ml) was treated with anhydrous AlCl₃ (66 mg, 0.5 mmol) and the mixture was heated at reflux for 2 h. The mixture was then carefully treated with water (20 ml) at 0 °C and the CCl₄ layer evaporated to dryness. The residual solid was then separated by LC on a silica gel column (2.5 × 35 cm) using hexane-CH₂Cl₂ (3:1) mixture as a mobile phase. The main fraction of R_F 0.05 was evaporated to dryness and identified by ¹¹B NMR as 3,4,7-Cl₃-1 (181 mg, 80%). Analytical samples were obtained by crystallization from hot hexane as white crystals. 3,4,7-Cl₃-1: m.p. 178 °C. MS, *m/z*: 232 (1%, M⁺), 225 (100%). For C₂H₉B₈Cl₃ (225.9) calculated: 10.63% C, 4.02% H; found: 10.76% C, 4.15% H.

7-Br-nido-5,6-C₂B₈H₁₁ (7-Br-1) and 4,7-Br₂-nido-5,6-C₂B₈H₁₀ (4,7-Br₂-1)

A solution of compound 1 (123 mg, 1 mmol) in CS_2 (20 ml) was treated with Al powder (20 mg) and Br_2 (240 mg, 1.5 mmol; dropwise), and the mixture was stirred at room temperature for 4 h. The mixture was then carefully treated with water (20 ml) at 0 °C and CH_2Cl_2 (20 ml) under stirring. The CH_2Cl_2 layer was evaporated to dryness and the residual solid was then separated by LC on a silica gel column (2.5 × 35 cm) using hexane- CH_2Cl_2 (3:1) mixture as a mobile phase. The main fractions of R_F 0.36 and 0.16 were evaporated to dryness and identified by ¹¹B NMR as 7-Br-1 (73 mg, 36%) and 4,7-Br₂-1 (146 mg, 52%), respectively. Analytical samples were obtained by crystallization from hexane solutions as white crystals.

7-Br-1: m.p. 152 °C. MS, m/z: 204 (35%, M⁺), 201 (100%). For $C_2H_{11}B_8Br$ (201.5) calculated: 11.92% C, 5.50% H; found: 11.85% C, 5.41% H.

4,7-Br₂-1: m.p. 174 °C. MS, *m/z*: 284 (20%, M⁺), 281 (100%). For $C_2H_{10}B_8Br_2$ (280.4) calculated: 8.57% C, 3.59% H; found: 8.62% C, 3.60% H.

7-I-nido-5,6-C2B8H11 (7-I-1)

A solution of compound 1 (123 mg, 1 mmol) in benzene (20 ml) was treated with anhydrous $AlCl_3$ (33 mg, 0.25 mmol) and I_2 (888 mg, 3.5 mmol), and the mixture was stirred at room temperature for 2 h. The mixture was then carefully treated with water (20 ml) at 0 °C and CH_2Cl_2 (20 ml) under stirring. The CH_2Cl_2 layer was evaporated to dryness and the residual solid then separated by LC on a silica gel column (2.5 × 35 cm) using hexane- CH_2Cl_2 (3:1) mixture as a mobile phase. The main fraction of R_F 0.15 was evaporated to dryness and identified by ¹¹B NMR spectroscopy as 7-I-1 (211 mg, 85%). Analytical samples were obtained by crystallization from hexane solutions as white crystals. 7-I-1: m.p. 165 °C. MS, m/z: 250 (50%, M⁺), 249 (100%). For $C_2H_{11}B_8I$ (248.5) calculated: 9.67% C, 4.46% H; found: 9.83% C, 4.52% H.

This work was supported by the Grant Agency of Czech Republic (project No. 203/05/2646).

REFERENCES

- 1. Plešek J., Heřmánek S.: Chem. Ind. (London) 1971, 1267.
- 2. Štíbr, B. Plešek J., Heřmánek S.: Collect. Czech. Chem. Commun. 1973, 38, 335.
- 3. Štíbr B., Plešek J., Heřmánek S.: Collect. Czech. Chem. Commun. 1974, 39, 1805.

Holub, Bakardjiev, Štíbr:

- 4. Holub J., Štíbr B., Janoušek Z., Kennedy J. D., Thornton-Pett M.: *Inorg. Chim. Acta* **1994**, 221, 5.
- 5. Štíbr B., Holub J., Teixidor F., Viñas C.: Collect. Czech. Chem. Commun. 1995, 60, 2023.
- 6. Su K., Carrol P. J., Sneddon L. G.: J. Am. Chem. Soc. 1993, 115, 10004.
- 7. Štíbr B., Holub J., Bakardjiev M., Hnyk D., Tok O. L., Milius W., Wrackmeyer B.: *Eur. J. Inorg. Chem.* **2002**, *7*, 2320.
- 8. Shedlow A. M., Sneddon L. G.: Inorg. Chem. 1998, 37, 5269.
- 9. Wille A. E., Su K., Carroll P. J., Sneddon L. G.: J. Am. Chem. Soc. 1996, 118, 6407.
- Nestor K., Fontaine X. L. R., Greenwood N. N., Kennnedy J. D., Plešek J., Štíbr B., Thornton-Pett M.: *Inorg. Chem.* 1989, 28, 2219.
- 11. Štíbr B., Heřmánek S., Janoušek Z., Dolanský J., Plzák Z., Plešek J.: *Polyhedron* **1982**, *1*, 822.
- 12. Janoušek Z., Plešek J., Heřmánek S., Štíbr B.: Polyhedron 1985, 4, 1797.
- a) Sprecher R. F., Aufderheide B. E., Luther III G. W., Carter J. C.: J. Am. Chem. Soc. 1974, 96, 4404; for review see, e.g.: b) Muetterties E. L. (Ed.): Boron Hydride Chemistry, p. 349. Academic, New York 1973; and references therein.
- See, for example: a) Kennedy J. D. in: *Multinuclear NMR* (J. Mason, Ed.), p. 221. Plenum Press, New York 1987; b) Hutton W. C., Venable T. L., Grimes R. N.: *J. Am. Chem. Soc.* **1984**, *106*, 29; c) Schraml J., Bellama J. M.: *Two-Dimensional NMR Spectroscopy*. Wiley, New York 1982; and references therein.
- 15. Fontaine X. L. R., Kennedy J. D.: J. Chem. Soc., Dalton Trans. 1987, 1573.
- 16. See, e.g.: Heřmánek S.: Chem. Rev. 1992, 92, 325; and references therein.
- 17. Holub J., Bakardjiev M., Štíbr B.: Collect. Czech. Chem. Commun. 2005, 70, 1861.
- Plešek J., Štíbr B., Fontaine X. L. R., Kennedy J. D., Heřmánek S., Jelínek T.: Collect. Czech. Chem. Commun. 1991, 56, 1618.
- 19. Shriver D. F., Drezdon M. A.: *Manipulation of Air Sensitive Compounds*, 2nd ed. Wiley, New York 1986.
- 20. Plešek J., Heřmánek S.: Collect. Czech. Chem. Commun. 1974, 39, 821.
- 21. McFarlane W.: Proc. R. Soc. London, Ser. A 1968, 306, 185.

1556